Januar 2018, Challenge-Team: Und nochmals ein Line Follower…

Nach den wohlverdienten Weihnachtsferien bereitete sich das Challenge-Team weiterhin für die Austrian Open, welche im April in Linz/AU stattfinden werden, vor.

Bei der Mechanik konnte der grösste Teil des Roboters fertiggestellt werden: Er kann nun mit der Elektronik bestückt werden. Die Grundplatten wurden aus einer Holzplatte gefräst. Der Grund ist, dass Holz zum einen leichter als der von uns verwendete Kunststoff ist und zum anderen besser für die Verarbeitung geeignet ist. Einzig die Verbindungsstellen, welche die Servos halten und die untere mit der oberen Platte verbinden, wurden aus Kunststoff angefertigt. Beim Aufladesystem der Bälle gab es einige Probleme. So darf die Verbindung von den Servos zum System nicht direkt sein, da sonst bei jeglicher asynchronen Drehung der Servos die Schaufel auseinanderbrechen würde. Um dieses Problem zu lösen wurde zunächst eine Verbindung zu den Servos erstellt, welche danach an der Schaufel befestigt wird.

Die Software hat im Januar den Line Follower neu geschrieben. Der Grund dafür waren die Korrekturwerte: Bei geringem Korrekturwert würde der alte Line Follower geradeaus über die Ecken fahren, bei etwas höherem Wert könnte er jedoch einer geraden Linie nicht mehr folgen, da der Roboter zu schnell werden und so die Linie verlieren würde. Mit der Hilfe eines älteren Mitglieds konnte ein neuer Line Follower entwickelt werden. Dieser war dann zwar deutlich besser als der Vorherige, er konnte aber immer noch keiner Ecke folgen, da ein Sensor immer von der Linie abkam. Momentan ist deshalb wiederum ein neuer Line Follower in Entwicklung. Dieser baut auf den Ideen der vorherigen Version auf, soll jedoch das „Eckenproblem“ lösen.

Das Elektronikteam hat im ersten Monat des Jahres ein defektes Powerboard repariert und ein weiteres fertiggestellt. Mit der Software wurde ausserdem an Lösungsvorschlägen getüftelt und verschiedene Arten von Lichtsensoren an verschiedenen Oberflächen getestet. Mit diesen Tests wollte man herausfinden wie gut jene Lichtsensoren verschiedene Materialien erkennen können und wie nützlich diese dann fürs Team sind. Zusätzlich wurde das neuste Teammitglied in verschiedenen Löttechniken geschult, wie zum Beispiel dem Löten von Widerständen an Platinen. Auch das Erstellen von Schaltplänen für Platinen auf der von uns benutzten Software wurde geübt. Neben diesen grösseren Aufgaben wurden auch Kleinigkeiten erledigt, wie das Anfertigen von Steckern oder das Reparieren von Kabeln.

Natürlich hat auch das Challenge-Team kräftig an den Vorbereitungen für den 24h-Wettbewerb mitgeholfen, welcher am 10. und 11. Februar stattfinden wird.

Januar 2018, WM-Team: Neue Motoren, neue Probleme

Das WM-Team liegt aussergewöhnlich gut im Zeitplan. Trotzdem: Vor den Austrian Open (April) und später dem RoboCup Junior in Montreal (Juni) wartet noch viel Arbeit auf unser erfahrenstes Team.

Ein grosses Thema im Januar war bei allen Teams der 24h-Wettbewerb; oder wenigstens die Vorbereitung auf dieses Spektakel. Wie jedes Jahr mussten die Spielfelder ja vorher noch gebaut werden. Geplant waren vier Bautreffen, von welchen drei bereits abgehalten wurden. Jeweils am Samstag oder Sonntag wurde während einigen Stunden geschnitten, geschleift und gebohrt: Jedes Wochenende zwei Spielfelder einer Kategorie. Vor dem letzten Bautreffen kann man nun sagen, dass, wenn nichts schiefläuft, der 24h-Wettbewerb wie geplant am 10. und 11. Februar stattfinden kann.

Doch auch neben den Vorbereitungen für den 24h-Wettbewerb musste gearbeitet werden. Die Mechanik hat so zum Beispiel neue Carbonstäbe bestellt und alle Teile (bis auf einige welche noch von der Software getestet werden muss) des zweiten Roboters ausgeschnitten. Die Carbonstäbe werden als Achse für den Dribbler benutzt. Apropos Dribbler: Mit dem Ankommen der Carbonstäbe können nun endlich die verschiedenen Dribbler getestet werden. Dies wird im Februar an hoher Stelle auf der To-Do-Liste der Mechanik stehen. Neben den Carbonstäben sind auch die neuen Faulhaber-Motoren angekommen. Da gab es aber leider eine kleine Verschätzung. Damit der Motor sauber ins Aluminiumgehäuse des Omniwheels passt, musste eine kleine Hülse angefertigt werden. Mit Hilfe der Drehbank entstand aus einem 10mm dicken Aluminiumstab ein mit 3mm Innendurchmesser und 4mm Aussendurchmesser relativ dünnes Aluröhrchen, welches so über den Motor gestülpt wird. So kann dieser im Gehäuse nicht mehr umherrutschen.

Die Software hat im Januar an einer Möglichkeit gearbeitet, einen anderen Roboter mit den Ultraschallsensoren zu erkennen um einerseits die Positionsfindung zu verbessern und andererseits um auf verschiedene Situationen besser reagieren zu können. Durch die Streuung der Ultraschalles war jedoch nicht immer klar ersichtlich, wo sich das gemessene Objekt befindet. Dies stelle sich als Problem heraus. Es wurde versucht, die Streuung so gut wie möglich einzudämmen. Zusätzlich wurde mit den Tests der neuen Ballsensoren begonnen. Dabei wurde ein weiteres Problem ersichtlich: Die Werte konnten nicht alle auf einmal ausgegeben werden. Mit Hilfe konnte aber eine Lösung gefunden werden. Der Prozessor war mit dem Programm schon stark ausgelastet und konnte so nicht mehr so viele zusätzliche Aufgaben bewältigen.

Die Elektronik hat die angekommenen Boards bestückt. Die Ballsensoren können die Entfernung des Balls ausgeben, was soweit gut ist. Um die Kommunikation untereinander und mit dem Mainboard zu testen müssen sie jetzt noch eingebaut werden. Auch die Liniensensorboards funktionieren gut. Durch das Potentiometer kann man die Referenzspannung so einstellen, dass die Werte von grün zu weiss zu schwarz relativ grosse Unterschiede haben. Dadurch können die Linien auf dem Spielfeld mit grosser Zuverlässigkeit erkannt werden. Bei der Ansteuerung der neuen Motoren gab es allerdings einige Probleme. Die Referenzspannung für die digitalen Hallsensoren wurden zu hoch gesetzt. Nach der Korrektur rotierte der Motor, wurde jedoch ziemlich schnell heiss. Das könnte daran liegen, dass die Hallsensorsignale rauschen. Das muss noch behoben werden. Ausserdem hat die Elektronik am Motorboardlayout gearbeitet, sodass es in den Roboter passt.